Modeling how reproductive ecology can drive protein diversification and result in linkage disequilibrium between sperm and egg proteins.

نویسندگان

  • Maurizio Tomaiuolo
  • Don R Levitan
چکیده

Gamete-recognition proteins determine whether sperm and eggs are compatible at fertilization, and they often evolve rapidly. The source of selection driving the evolution of these proteins is still debated. It has been suggested that sexual conflict can result in proliferation of genetic variation and possibly linkage disequilibrium between sperm and egg proteins. Empirical evidence suggests that both male and female reproductive success can be predicted by their sperm ligand genotype, but why female success can be predicted by a protein expressed only in males is unknown. Here we use mathematical modeling to investigate the interaction between reproductive behavior and sperm availability on the evolution of sperm ligands and egg receptors. We consider haploid and diploid expression in gametes in two possible ecological scenarios, monogamous spawning and competitive spawning. Reproductive behavior plays an important role in determining possible outcomes resulting from sexual conflict. Sperm limitation selects for common genotypes regardless of mating behavior. Under conditions of sperm abundance, competitive spawning provides conditions for the persistence of allelic variation and gametic disequilibrium. With monogamous spawning, such conditions are more restrictive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assortative mating drives linkage disequilibrium between sperm and egg recognition protein loci in the sea urchin Strongylocentrotus purpuratus.

Sperm and eggs have interacting proteins on their surfaces that influence their compatibility during fertilization. These proteins are often polymorphic within species, producing variation in gamete affinities. We first demonstrate the fitness consequences of various sperm bindin protein (Bindin) variants in the sea urchin Strongylocentrotus purpuratus, and assortative mating between males and ...

متن کامل

Coevolution of Interacting Fertilization Proteins

Reproductive proteins are among the fastest evolving in the proteome, often due to the consequences of positive selection, and their rapid evolution is frequently attributed to a coevolutionary process between interacting female and male proteins. Such a process could leave characteristic signatures at coevolving genes. One signature of coevolution, predicted by sexual selection theory, is an a...

متن کامل

Positive selection on human gamete-recognition genes

Coevolution of genes that encode interacting proteins expressed on the surfaces of sperm and eggs can lead to variation in reproductive compatibility between mates and reproductive isolation between members of different species. Previous studies in mice and other mammals have focused in particular on evidence for positive or diversifying selection that shapes the evolution of genes that encode ...

متن کامل

Simultaneous positive and negative frequency-dependent selection on sperm bindin, a gamete recognition protein in the sea urchin Strongylocentrotus purpuratus.

Gamete-recognition proteins often, but not always, evolve rapidly. We explored how variation in sperm bindin influences reproductive success of the sea urchin Strongylocentrotus purpuratus during group spawning in the sea. Despite large variation in male and female abundance and neighbor distances, males with common genotypes had higher reproductive success than males with rare genotypes. Howev...

متن کامل

Reproductive protein evolution within and between species: maintenance of divergent ZP3 alleles in Peromyscus.

In a variety of animal taxa, proteins involved in reproduction evolve more rapidly than nonreproductive proteins. Most studies of reproductive protein evolution, however, focus on divergence between species, and little is known about differentiation among populations within a species. Here we investigate the molecular population genetics of the protein ZP3 within two Peromyscus species. ZP3 is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American naturalist

دوره 176 1  شماره 

صفحات  -

تاریخ انتشار 2010